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In this article, we study the influence of solid-to-fluid density ratio m on the type of
vortex-induced oscillation of a square section prism placed inside a two-dimensional
channel. We assume that the solid body has neither structural damping nor spring
restoring force. Accordingly, the prism equation of motion contains only inertia
and aerodynamics forces. The problem is considered in the range of Reynolds
numbers Re ∈ [50 200] (based on the prism cross-section height h) and channel
widths H = H ′/h ∈ [2.5 10]. We found that, for each Re and H , there is a critical
mass ratio mc that separates two different oscillation regimes. For m > mc, the prism
oscillation is periodical and contains a single harmonic. For m<mc, the prism
oscillation changes completely and assumes an irregular pattern that is characterized
by multiple harmonics that appear to belong to a uniform spectrum. The change
from one regime to the other is abrupt and we were not able to observe a transitional
regime in which the number of response harmonics grew by finite steps. The value
of the critical mass ratio grows along with the Reynolds number and the channel
width.

1. Introduction
One of the research lines that are currently being developed within the very broad

field of vortex-induced vibrations is the case where no structural restoring force is
present. In practice, this situation could be achieved, for example, using air bearings
for the experimental set-up mounting (Govardham & Williamson 2002). From the
mathematical modelling point of view, this problem is characterized by the fact
that no spring constant appears in the equation of motion of the bluff body that
oscillates due to vortex shedding. One of the possible applications of a system based
on this type of motion is in the area of energy-harvesting microdevices (Sanchez-Sanz,
Fernandez & Velazquez 2009).

In the already mentioned work of Govardham & Williamson (2002) the authors
point out that, in the flow around a circular cylinder, large-amplitude oscillations
appear for values of the ratio between the circular cylinder mass and displaced fluid
mass smaller than the critical ratio of 0.54 at the Reynolds number range tested
by the authors. Interestingly enough, this oscillation regime of resonance occurs for
an infinitely wide span of the normalized velocity, provided that the mass ratio is
below the critical value. That study was experimental and the authors analysed the
regime in which the Reynolds numbers varied from 4000 up to 22 000. In the
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low-Reynolds-number regime, Shields, Leonard & Roshko (2001) carried out a
numerical study on the oscillations of a circular cylinder at Re = 100 immersed
in a uniform stream in the limit of zero values of mass, damping and elastic restoring
force. Among other findings, the authors noted that flow induced oscillations with
amplitudes of the order of the cylinder diameter were possible, even when the spring
system was not present. The authors argued that the high-amplitude oscillation was
due to the balance between wake vortex forces and inertial forces. Mittal & Singh
(2005) found self-excited vibrations at Reynolds numbers as low as Re = 20 for an
elastically mounted circular cylinder immersed in uniform flow. They found that
the mass of the oscillator plays a critical role when determining the ratio of the
vortex shedding frequency to the natural frequency of the oscillator. Also, Ryan,
Thompson & Hourigan (2005) performed a two-dimensional numerical investigation
of the flow-induced vibration of a circular cylinder at low Reynolds numbers in
free stream conditions (blockage effects less than 2 %). They identified two different
regions of high-amplitude oscillations: one in the range Re = [40, 95] and other for
Re > 180. In both regimes, the cylinder oscillation frequency was unique.

Concerning a generic discussion on the problem of vortex induced vibration
including all relevant parameters, the reader is referred to the reviews of Williamson &
Govardhan (2004, 2008) and Sarpkaya (2004).

In this computational investigation we study the transverse vortex-induced vibration
of a square cross-section cylinder (prism) in internal flow. We assume that the prism
has neither structural damping nor spring restoring force, so that its equation of
motion reduces to a balance of inertia and aerodynamics forces. The Reynolds
number Re = ρ∞U∞h/μ∞ based on the density and viscosity of the flow ρ∞ and μ∞,
the mean inlet velocity U∞ and the cross-section height of the prism h changes in the
range 50–200, condition that strengthens the hypothesis of two dimensionality of the
flow (Robichaux, Balachandar & Vanka 1999).

The present work is motivated by the findings reported by Sanchez-Sanz et al. (2009)
in which this configuration was assumed to be coupled to a microelectric generator
with the aim of exploring its feasibility as an energy harvesting microdevice. In the
present paper there is no coupling to any external generator and we study the influence
of the prism-to-fluid density ratio m = ρsolid/ρ∞ on the prism oscillation observed at
different Reynolds numbers. Our work differs from that of other researchers, mainly
from that of Ryan et al. (2005), in the sense that we consider a prismatic body
(not a circular cylinder) and that the blockage ratio plays a critical role in our
problem. In what follows, the test problem and the mathematical and numerical
models are described first. Next, results are shown and concluding remarks are
given.

2. Problem description and mathematical and numerical models
We consider an incompressible fluid flow in a two-dimensional channel around

a square section prism that can move freely in the direction transverse to the flow
(figure 1). In formulating the problem in non-dimensional form we use the mean
inlet velocity U∞ to scale both horizontal u′ and vertical v′ velocity components,
while h is chosen to scale streamwise x ′ and transverse y ′ coordinates. The pressure
p′ is scaled with the characteristic dynamic pressure ρ∞U 2

∞ and the time t ′ is
measured in units of residence time h/U∞. Introducing the resulting non-dimensional
variables u = u′/u∞, v = v′/u∞, p = p′/(ρ∞U 2

∞), x = x ′/h, y = y ′/h and t = U∞t ′/h, with
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Figure 1. Sketch of the configuration investigated.

the primes indicating dimensional variables, the problem reduces to that of integrating
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At the inlet section x = −5, we assume as boundary conditions a fully developed
Poiseuille profile with the pressure computed by solving a discretized version of the
x-momentum equation with one-sided derivatives pointing into the computational
domain
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At the outlet section x = 15, zero x-derivatives are considered for the velocity
components with the pressure computed again from the x-momentum equation with
one-sided derivatives
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At the fixed and moving solid walls no-slip velocity conditions were imposed: u = v =0
at y = ± 1.25 and u =0, v = dyc/dt at the prism walls, where yc = y ′

c/h indicates the
position of the centre of the cylinder measured from the origin of coordinates. Pressure
is obtained by solving the discretized momentum equations with derivatives pointing
towards the interior of the computational domain. The channel width H = H ′/h is
varied to study the effect of the blockage ratio on the flow.

The equation of motion that describes the vortex-induced vibration of the prism in
transverse direction y is given by Newton’s second law

m
d2yc

dt2
=

1

2
Cl, (2.6)

with m = ρsolid/ρ∞ being the prism-to-fluid density ratio and Cl = 2Fy/(ρ∞u2
∞h) the

time-dependent lift with Fy the transverse component of the total force induced by
the fluid on the prism calculated along its surface Σ

F = −
∮

Σ

pn dσ +
1

Re

∮
Σ

¯̄τn dσ . (2.7)

In previous expression, n is the unit length vector normal to the prism surface pointing
to the fluid and ¯̄τ xy = ∂u/∂y + ∂v/∂x.
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The computation were started by using a previously calculated velocity field in
which the prism remains stationary. At a certain time t0, the prism is left loose from
its original location with zero initial velocity yc(t0) = dyc/dt |t = t0

= 0.
The numerical integration is performed by using the mixed implicit–explicit

relaxation-based pseudo-compressibility formulation proposed by Chorin (1967)
and Rogers, Kwak & Kiris (1991) for steady and unsteady problems respectively.
According to this method, in order to advance the solution from the real time tn to
the next time step tn+1, an explicit iterative relaxation procedure in the pseudo-time τ

is used to solve the set of equations (2.1)–(2.3). Additional derivatives ∂u/∂τ , ∂v/∂τ

and β−1∂p/∂τ are added to the left-hand side of momentum and continuity equations,
with β = 250 the pseudo-compressibility parameter defined as in Mendez & Velazquez
(2004). This method has the advantage of coupling the pressure and velocity fields
directly at the same time level so as to generate a set of hyperbolic equations. The
resulting artificial waves provide a mechanism to propagate information through the
domain and drive pseudo-time derivatives towards zero, thereby satisfying original
momentum and continuity equations (2.1)–(2.3). Spatial terms are discretized with
a centred second-order accurate scheme while a second-order three-point-backward
scheme is used for the temporal terms ∂Φ/∂t |n+1

i,j = (1.5Φn+1
i,j − 2Φn

i,j + 0.5Φn−1
i,j )/	t ,
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i,j )/	τ where Φ stands for u, v and p. Equations
(2.1)–(2.3) are then written at every grid point (xi, yj ) as
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where RHSu and RHSv include the discretized form of the spatial derivatives of (2.1)
and (2.2) respectively. The Navier–Stokes equations are coupled with the equation of
motion (2.6) through the lift coefficient Cl . The cylinder position is updated once the
pseudo-time iteration has converged by using the immersed boundary method.

The current numerical scheme has been validated by comparing results with the
computations of Kelkar & Patankar (1992) at Re = 100 and Okajima et al. (1997) at
Re = 200 for confined flows and the experimental measurements of Okajima (1982)
with Re = 200. Further details of the discretization and series of validations tests cases
and sensitivity studies can be found (Mendez & Velazquez 2004; Velazquez, Arias &
Mendez 2008; Sanchez-Sanz et al. 2009). Temporal and spatial convergence rates of
the code have also been checked and they are observed to approach those predicted
by the theory. The computational domain presented in figure 1 was described with
an uniform grid in both transverse and streamwise direction with spacing 	y =0.015,
	x =0.02 and a total of 1.66 × 105, 2.49 × 105 and 3.32 × 105 grid points for H = 2.5,
3.75 and 5 respectively. On the surface of the cylinder a total of 232 grid points were
used to describe its contours. Apart from the above mentioned sensitivity analysis,
additional computations were carried out to check the sensibility of the results with
the grid by doubling the number of points in both stream and spanwise direction.
The maximum differences found between the two meshes were found in the amplitude
of the lift coefficient and were reduced to a mere 2 %.
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Figure 2. Time evolution of the prism location yc (c, d ) and FFT of the displacement (a, b)
for Re = 200, H = 2.5 and m= 0.1 and m= 0.7. The variable Y in (a) and (b) represents the
amount of energy contained in each frequency.

3. Results
3.1. Oscillatory response

The set of equations presented in (2.1)–(2.7) depends only on the Reynolds number
Re, the density ratio m and the channel width H . To explore their influence we start
presenting the solution obtained from the integration of these equations with Re = 200
and H =2.5. In figure 2 we show the temporal evolution of the prism location yc and
its fast Fourier transform (FFT)

Y (f ∗) =

N∑
n=1

yc(tn)e
−i2πf ∗tn (3.1)

for density ratios m =0.1 and m =0.7, with N the total number of time steps given in
the computation. The non-dimensional frequency number is defined as f ∗ = f ′h/U∞
with f ′ the dimensional prism oscillation frequency. The time step chosen during the
integration was constant 	t =10−4. For m = 0.7, the prism oscillates periodically at
a neatly defined frequency f ∗

0 = 0.49 determined by the vortices shedding that gives
rise to the Kármán street downstream of the cylinder. For this density ratio, all the
energy of the spectrum Y is localized in that frequency.

In figure 2 we also present the prism displacement time evolution yc and its
fast Fourier transform for m =0.1. The periodical pattern described for m =0.7 has
been abandoned and a completely irregular solution is observed, as can be seen
in figures 2(c) and 4(b). The harmonic spectrum in these plots covers the range
0 to 0.6 with similar energies Y contained in every frequency f ∗. The maximum
oscillation amplitude ycmax

in this case is much larger that in the case m =0.7 with
ycmax

= (0.6045, 0.184) for m =(0.1, 0.7) respectively. This trend continues as m grows
and leads, in the limit m → ∞, to a solution completely equivalent to that of the
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Figure 3. Time evolution of the prism location yc (c, d ) and FFT of the displacement (a, b)
for Re = 50, H = 2.5 and m= 0.05 and m= 0.7. The variable Y in (a) and (b) represents the
amount of energy contained in each frequency.

stationary prism in which the oscillation amplitude is zero and the non-dimensional
vortex detachment frequency is St = f ′

vsh/U∞ ∼ 0.412.
A similar type of behaviour has been observed for Re = 50. In figure 3 we show

the results obtained (displacement time history and FFT) at this lower Reynolds
number for m =0.05 and m =0.7. For m > 0.07 the oscillation was found to have a
regular pattern. The behaviour of the solution observed for the different Re suggests
the existence of a critical density ratio mc separating the unique-frequency oscillation
regime from the highly irregular one.

The relation between the oscillation amplitudes in the regular oscillation regime
m>mc can be easily obtained from the prism motion equation (2.6). Assuming
that the aerodynamical forces take the form Cl =F0 sin(2πSt t − θ), with θ a certain
phase angle, F0 the force amplitude and St the non-dimensional frequency of vortex
shedding. The position of the cylinder can, therefore, be obtained from the integration
of (2.6) to give yc = −CRe sin(2πf ∗t) with CRe = F0/[2m(2πf ∗)2] and f ∗ = St . For a
certain density ratio m, we can write

K =
CRe=50

CRe=200

=
F0,Re=50

F0,Re=200

(
f ∗

Re=200

f ∗
Re=50

)2

. (3.2)

From the numerical integration we obtain non-dimensional frequency numbers
f ∗ =(0.488, 0.380), force amplitudes F0 = (2.809, 2.710) and maximum oscillation
amplitudes ycmax

= (0.184, 0.296) for m =0.7, H = 2.5 and Re = (200, 50) respectively.
The ratio between both numerical amplitudes gives K = 1.608, which compares well
with the value of K =1.591 calculated from (3.2). From the numerical results, small
differences of around 4 % are observed in the force amplitude for Re = 50 and
Re = 200. Based on this, we could assume F0 constant in the range of Reynolds
numbers considered and write (3.2) as K =(f ∗

Re =200/f
∗
Re =50)

2 to get K = 1.649. This
simplification works relatively well since, for m > mc, transverse forces are mainly
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Figure 4. Vorticity ω = ∂v/∂x −∂u/∂y isocontours obtained for Re = 200, H = 2.5 and t = 258
with m= 0.1 (a) and m= 0.7 (b) in the range ω ∈ [−15, 15] with 	ω = 1. Negative vorticity is
plotted in grey while positive vorticity is in black.

created by pressure gradients, with a contribution of order O(Re−1) from the viscous
terms that becomes increasingly important as Re reduces.

3.2. Critical mass mc

A continuous reduction of an initially large density ratio m reveals an unexpected
feature related to the periodicity of the prism oscillation. The unique-frequency
oscillation behaviour holds for decreasing m until the condition m =mc is satisfied.
For this density ratio, the character of the solution changes abruptly and the time
evolution of the cylinder location changes from the smooth periodical oscillation to
a completely irregular pattern as shown in figures 2–4.

To clarify this point, we performed a series of numerical simulations changing the
density ratio from m =2 down to 0.1. The results obtained are presented in figure 5
where the peaks of the oscillation frequency spectrum are shown for each mass
ratio. For sufficiently large density ratios m > mc, the non-dimensional frequency f ∗ is
single-peaked and its value increases as the density ratio decreases. Then, for m =mc

the system suddenly enters into an unstable mode and the oscillation frequency goes
from a well-defined value to a nearly continuum frequency spectrum indicating that
the prism is moving following a strongly irregular pattern. This abrupt change in the
solution defines the critical density ratio mc.

In figure 5 the oscillation frequency is plotted versus the density ratio for Re =50
and 200 and H =2.5. In both cases f ∗ is well defined until a bifurcation is observed
in the plot for a certain m =mc. From the numerical solution we get mc 	 (0.31, 0.07)
for Re = (200, 50) respectively. The dependency of mc with the Reynolds defines the
map of solutions plotted in figure 6(a).

In all Reynolds numbers considered we tried to discern whether the transition from
the regular to the irregular regime was abrupt or period doubling could be observed.
In this regard, we have to say that period doubling has been only observed for
Re =200 in a narrow range of density ratio m ∈ [0.31 0.29] in which the oscillation
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blockage ratio (Re = 200) (b).

Strouhal number stop being unique and the spectrum showed progressively increasing
oscillation harmonics.

3.2.1. Blockage ratio

Another important parameter that affects the problem behaviour is the channel
width H. To study this effect, we have performed an additional series of computations
to identify, for different values of H, the critical mass ratio that separates the two
oscillation regimes at Re =200. The results are summarized in figure 6(b), where it
could be observed that mc tends to increase for larger values of H. From the point
of view of applications, if alternatives are sought to increase mixing, the conclusion
from this parametric study is that the combination of a strong blockage and a light
body favours this effect which, incidentally, goes in the direction of making the system
more compact and lighter.

3.3. Pressure drop

A final question is related to the larger pressure drop that occurs along the channel
because of the prism motion. In figure 7 we show the time evolution of the
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space-average pressure drop 	p(t) = −H −1
∫ H/2

−H/2
(p(xR) − p(xF )) dy between the

section located just before xF = −0.5 and after the prism xR = 0.5 for Re = 200
and H =2.5 in three situations: stationary prism m → ∞ (figure 7a), oscillation with
m = 0.7 (figure 7b) and oscillation with m =0.1 (figure 7c).

As expected, the pressure drop behaves following a pattern similar to that of the
prism oscillation. Also, it is to be noted that the time averaged values of this pressure
drop (related to the power of the pump needed to propel the fluid) 	p = (t2 −
t1)

−1
∫ t2

t1
	p dt are 	p =(1.611, 2.923, 3.963) for m =(∞, 0.7, 0.1) respectively. This

increment in the pressure drop is easy to understand if we remember that the prism is
oscillating. The effective blockage ratio for the stationary prism m = ∞ is 1/H = 0.4
much smaller than that of the moving cylinder 2(ycmax

+ 0.5)/H = (0.5475, 0.880)
for m =(0.7, 0.1). Therefore, the rest of the channel width is occupied by a high-
level vorticity region that constraints the space through where the fluid can flow
downstream.

4. Concluding remarks
We found that in the vortex induced motion of a prism in internal flow with

neither damping nor restoring force at low Reynolds number, two different regimes
are present. These two regimes are characterized by the oscillation pattern that is
regular (one frequency) above certain critical mass and becomes highly irregular
(near continuum spectrum of harmonics) below that critical value. Transition from
one regime to the other is abrupt and this fact opens up some possibilities when
thinking about practical applications of the system being described (that could be
easily materialized using standard micromanufacturing facilities). For example, the
oscillation pattern could be used to detect changes in the flow Reynolds number,
either because of changes in velocity or temperature (for instance, water Reynolds
number threefold for temperature changes in the range 20 ◦C–80 ◦C due to kinematic
viscosity variations). It was also found that the oscillation pattern strongly influences
both the time evolution of the pressure drop and its time-averaged value that is
related to the power needed by the pump to propel the fluid.
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The different oscillation flow patterns also suggest the idea of using this system to
promote mixing at these low Reynolds numbers. For example, if one were to promote
heat transfer inside a microchannel, the results presented in this article could be used
to design a kind of moving vortex promoter that would enhance downstream mixing;
albeit at a higher pumping cost because the space–time averaged pressured drop is
larger for values of m below mc. This is the subject of ongoing research.

The authors want to acknowledge support from project DPI-2009-07591 of Plan
Nacional de I+D+i of the Spanish Ministry of Science and Innovation.
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